Samsung raises over $10 mn for Global Goals

Samsung Electronics announced that it has reached a significant milestone to advance the Sustainable Development Goals (SDGs), or the Global Goals, with a contribution of more than $10 million to the UN Development Programme (UNDP).

Government makes USB-C charging port mandatory: What it means for iPhone and Android smartphone users

Following in the European Union’s footsteps of mandating USB-C chargers for all electronics, the Indian government too is moving in a similar direction. The government has further chalked out its plan to standardise charging ports for smartphones, laptops and tablets in India. As a part of these, the Bureau of Indian Standards (BIS) – the body that is responsible for quality certification of electronics and gadgets in the country – is formalising charging standards in the country.

High-growth startups should start de-risking their path to IPO now

High-growth companies often set significant goals, knowing full well that the idea of “overnight success” is for the storybooks. However, there is no better time than the middle of a market downturn to start planning for the leap from a private to a public company.

De-risking the path to going public requires strategic planning, which takes time. Companies with goals to go public in less than three years must therefore plan for it now — despite the downturn — to get the running start they’ll need to navigate the open market.

Let’s explore why this adverse economy is ideal for planning an IPO and what to do about it.

Growth investors have recently pulled back

While some companies delay their IPOs, others can play catch-up and prepare for the time when the open market itches to invest again.

Carta reports that private fundraising levels have declined across the U.S. from a record-breaking 2021. Unsurprisingly, late-stage companies have experienced the brunt of this blow.

Market experts are currently encouraging leaders not to pin their hopes on venture capital dry powder, even though there’s plenty of it. As the graph below indicates, the size of late-stage funding rounds has shrunk.

Image Credits: Founder Shield

Although few enjoy market downturns, how this one unfolds can deliver insights to late-stage companies that pay attention. On one hand, many leaders are embracing the message of the Sequoia memo. We can agree with their ideas to prioritize profits over growth — scaling is different from what it used to be, and we must swallow that jagged pill.

On the other hand, cost-cutting and giving up hope of fundraising isn’t all doom and gloom. After all, when there is money to be found, some innovative founder will find it. We see it every day; only now, the path looks different.

Market downturns spur valuation corrections

Course-correcting is a concept frequently discussed amid market downturns. The pendulum swings one way for a period, then begins its journey toward a more balanced standard. In this case, the open market thrived on bloated valuations — most startups were overvalued before 2021.

Furthermore, many stated that 2021 was a miracle year, especially as VC investment nearly doubled to $643 billion. The U.S. sprouted more than 580 new unicorns and saw over 1,030 IPOs (over half were SPACs), significantly higher than the year before. This year has only welcomed about 170 public listings.

High-growth startups should start de-risking their path to IPO now by Ram Iyer originally published on TechCrunch

What to expect from AI in 2023

As a rather commercially successful author once wrote, “the night is dark and full of terrors, the day bright and beautiful and full of hope.” It’s fitting imagery for AI, which like all tech has its upsides and downsides.

Art-generating models like Stable Diffusion, for instance, have led to incredible outpourings of creativity, powering apps and even entirely new business models. On the other hand, its open source nature lets bad actors to use it to create deepfakes at scale — all while artists protest that it’s profiting off of their work.

What’s on deck for AI in 2023? Will regulation rein in the worst of what AI brings, or are the floodgates open? Will powerful, transformative new forms of AI emerge, a la ChatGPT, disrupt industries once thought safe from automation?

Expect more (problematic) art-generating AI apps

With the success of Lensa, the AI-powered selfie app from Prisma Labs that went viral, you can expect a lot of me-too apps along these lines. And expect them to also be capable of being tricked into creating NSFW images, and to disproportionately sexualize and alter the appearance of women.

Maximilian Gahntz, a senior policy researcher at the Mozilla Foundation, said he expected integration of generative AI into consumer tech will amplify the effects of such systems, both the good and the bad.

Stable Diffusion, for example, was fed billions of images from the internet until it “learned” to associate certain words and concepts with certain imagery. Text-generating models have routinely been easily tricked into espousing offensive views or producing misleading content.

Mike Cook, a member of the Knives and Paintbrushes open research group, agrees with Gahntz that generative AI will continue to prove a major — and problematic — force for change. But he thinks that 2023 has to be the year that generative AI “finally puts its money where its mouth is.”

Prompt by TechCrunch, model by Stability AI, generated in the free tool Dream Studio.

“It’s not enough to motivate a community of specialists [to create new tech] — for technology to become a long-term part of our lives, it has to either make someone a lot of money, or have a meaningful impact on the daily lives of the general public,” Cook said. “So I predict we’ll see a serious push to make generative AI actually achieve one of these two things, with mixed success.”

Artists lead the effort to opt out of data sets

DeviantArt released an AI art generator built on Stable Diffusion and fine-tuned on artwork from the DeviantArt community. The art generator was met with loud disapproval from DeviantArt’s longtime denizens, who criticized the platform’s lack of transparency in using their uploaded art to train the system.

The creators of the most popular systems — OpenAI and Stability AI — say that they’ve taken steps to limit the amount of harmful content their systems produce. But judging by many of the generations on social media, it’s clear that there’s work to be done.

“The data sets require active curation to address these problems and should be subjected to significant scrutiny, including from communities that tend to get the short end of the stick,” Gahntz said, comparing the process to ongoing controversies over content moderation in social media.

Stability AI, which is largely funding the development of Stable Diffusion, recently bowed to public pressure, signaling that it would allow artists to opt out of the data set used to train the next-generation Stable Diffusion model. Through the website HaveIBeenTrained.com, rightsholders will be able to request opt-outs before training begins in a few weeks’ time.

OpenAI offers no such opt-out mechanism, instead preferring to partner with organizations like Shutterstock to license portions of their image galleries. But given the legal and sheer publicity headwinds it faces alongside Stability AI, it’s likely only a matter of time before it follows suit.

The courts may ultimately force its hand. In the U.S. Microsoft, GitHub and OpenAI are being sued in a class action lawsuit that accuses them of violating copyright law by letting Copilot, GitHub’s service that intelligently suggests lines of code, regurgitate sections of licensed code without providing credit.

Perhaps anticipating the legal challenge, GitHub recently added settings to prevent public code from showing up in Copilot’s suggestions and plans to introduce a feature that will reference the source of code suggestions. But they’re imperfect measures. In at least one instance, the filter setting caused Copilot to emit large chunks of copyrighted code including all attribution and license text.

Expect to see criticism ramp up in the coming year, particularly as the U.K. mulls over rules that would that would remove the requirement that systems trained through public data be used strictly non-commercially.

Open source and decentralized efforts will continue to grow

2022 saw a handful of AI companies dominate the stage, primarily OpenAI and Stability AI. But the pendulum may swing back towards open source in 2023 as the ability to build new systems moves beyond “resource-rich and powerful AI labs,” as Gahntz put it.

A community approach may lead to more scrutiny of systems as they are being built and deployed, he said: “If models are open and if data sets are open, that’ll enable much more of the critical research that has pointed to a lot of the flaws and harms linked to generative AI and that’s often been far too difficult to conduct.”

Image Credits: Results from OpenFold, an open source AI system that predicts the shapes of proteins, compared to DeepMind’s AlphaFold2.

Examples of such community-focused efforts include large language models from EleutherAI and BigScience, an effort backed by AI startup Hugging Face. Stability AI is funding a number of communities itself, like the music-generation-focused Harmonai and OpenBioML, a loose collection of biotech experiments.

Money and expertise are still required to train and run sophisticated AI models, but decentralized computing may challenge traditional data centers as open source efforts mature.

BigScience took a step toward enabling decentralized development with the recent release of the open source Petals project. Petals lets people contribute their compute power, similar to Folding@home, to run large AI language models that would normally require an high-end GPU or server.

“Modern generative models are computationally expensive to train and run. Some back-of-the-envelope estimates put daily ChatGPT expenditure to around $3 million,” Chandra Bhagavatula, a senior research scientist at the Allen Institute for AI, said via email. “To make this commercially viable and accessible more widely, it will be important to address this.”

Chandra points out, however, that that large labs will continue to have competitive advantages as long as the methods and data remain proprietary. In a recent example, OpenAI released Point-E, a model that can generate 3D objects given a text prompt. But while OpenAI open sourced the model, it didn’t disclose the sources of Point-E’s training data or release that data.

Point-E generates point clouds.

“I do think the open source efforts and decentralization efforts are absolutely worthwhile and are to the benefit of a larger number of researchers, practitioners and users,” Chandra said. “However, despite being open-sourced, the best models are still inaccessible to a large number of researchers and practitioners due to their resource constraints.”

AI companies buckle down for incoming regulations

Regulation like the EU’s AI Act may change how companies develop and deploy AI systems moving forward. So could more local efforts like New York City’s AI hiring statute, which requires that AI and algorithm-based tech for recruiting, hiring or promotion be audited for bias before being used.

Chandra sees these regulations as necessary especially in light of generative AI’s increasingly apparent technical flaws, like its tendency to spout factually wrong info.

“This makes generative AI difficult to apply for many areas where mistakes can have very high costs — e.g. healthcare. In addition, the ease of generating incorrect information creates challenges surrounding misinformation and disinformation,” she said. “[And yet] AI systems are already making decisions loaded with moral and ethical implications.”

Next year will only bring the threat of regulation, though — expect much more quibbling over rules and court cases before anyone gets fined or charged. But companies may still jockey for position in the most advantageous categories of upcoming laws, like the AI Act’s risk categories.

The rule as currently written divides AI systems into one of four risk categories, each with varying requirements and levels of scrutiny. Systems in the highest risk category, “high-risk” AI (e.g. credit scoring algorithms, robotic surgery apps), have to meet certain legal, ethical and technical standards before they’re allowed to enter the European market. The lowest risk category, “minimal or no risk” AI (e.g. spam filters, AI-enabled video games), imposes only transparency obligations like making users aware that they’re interacting with an AI system.

Os Keyes, a Ph.D. Candidate at the University of Washington, expressed worry that companies will aim for the lowest risk level in order to minimize their own responsibilities and visibility to regulators.

“That concern aside, [the AI Act] really the most positive thing I see on the table,” they said. “I haven’t seen much of anything out of Congress.”

But investments aren’t a sure thing

Gahntz argues that, even if an AI system works well enough for most people but is deeply harmful to some, there’s “still a lot of homework left” before a company should make it widely available. “There’s also a business case for all this. If your model generates a lot of messed up stuff, consumers aren’t going to like it,” he added. “But obviously this is also about fairness.”

It’s unclear whether companies will be persuaded by that argument going into next year, particularly as investors seem eager to put their money beyond any promising generative AI.

In the midst of the Stable Diffusion controversies, Stability AI raised $101 million at an over-$1 billion valuation from prominent backers including Coatue and Lightspeed Venture Partners. OpenAI is said to be valued at $20 billion as it enters advanced talks to raise more funding from Microsoft. (Microsoft previously invested $1 billion in OpenAI in 2019.)

Of course, those could be exceptions to the rule.

Image Credits: Jasper

Outside of self-driving companies Cruise, Wayve and WeRide and robotics firm MegaRobo, the top-performing AI firms in terms of money raised this year were software-based, according to Crunchbase. Contentsquare, which sells a service that provides AI-driven recommendations for web content, closed a $600 million round in July. Uniphore, which sells software for “conversational analytics” (think call center metrics) and conversational assistants, landed $400 million in February. Meanwhile, Highspot, whose AI-powered platform provides sales reps and marketers with real-time and data-driven recommendations, nabbed $248 million in January.

Investors may well chase safer bets like automating analysis of customer complaints or generating sales leads, even if these aren’t as “sexy” as generative AI. That’s not to suggest there won’t be big attention-grabbing investments, but they’ll be reserved for players with clout.

What to expect from AI in 2023 by Kyle Wiggers originally published on TechCrunch

Samsung aims to expand chip production

According to experts in the industry, the tech giant is considering the expansion of its chip production in order to outperform its competitors and support the share price of the company once the market recovers.

How to use Realme UI 4.0 payment protection feature

Realme has confirmed that the new Realme UI 4.0 operating system, which is based on Android 13, features bright colours for an improved user experience and 30 new icons. The Smart Always-On Display (AOD) feature of Realme’s new custom ROM enables users to access multiple apps without having to unlock their phone.

Pin It on Pinterest